Introducción al riesgo de crédito


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción al riesgo de crédito"

Transcripción

1 Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta de cumplmento de las oblgacones contractuales por una de las partes. Este efecto es meddo como el costo de resttur los flujos de fondos s la contraparte ncumple con sus oblgacones. El resgo crédto de cada contraparte consste tanto en resgo de presettlement o de pre-acuerdo (es el resgo de ncumplmento de alguna de las oblgacones establecdas entre las partes mentras dure una transaccón, por ejemplo, que en una transaccón forward por moneda extranjera las partes hayan acordado la colocacón de márgenes ante movmentos adversos en el dsponble y dcha cláusula no se haya cumpldo) y settlement (es el resgo de ncumplmento del acuerdo propamente dcho, ejemplo, en una operacón de entrega de mercadería a plazo, cuando llegado el momento de entrega el vendedor de la msma se nega a entregarla).. ocones generales sobre resgo de crédto Es momento de examnar cuales son los drvers o conductores del resgo credtco, defndos tradconalmente como resgo presettlement. Los sstemas de medcón del resgo crédto tenen como objetvo cuantfcar el resgo de pérddas a causa del ncumplmento (o default) de la contraparte. La dstrbucón del resgo crédto puede ser vsta como un proceso compuesto conducdo por estas varables: Incumplmento o default: es una característca propa de cada contraparte, el hecho de que una de las partes entre en default no mplca que la otra tambén lo hará. Este tene una certa probabldad de ocurrenca denomnada probabldad de default ó probablty default (PD).

2 Credt exposure (CE): tambén conocdo como exposcón al default o ncumplmento (EAD), el cual es el valor económco de la demanda de la contraparte al momento del ncumplmento. Loss gven default (LGD): representa la pérdda fracconara ocasonada por un default. Por ejemplo, tomemos una stuacón en la cual el default resulte en una tasa de reposcón de sólo el 30%, es decr, sólo se pueda recuperar el 30% de la nversón; en esta stuacón, el LGD tene una exposcón del 70%. Tradconalmente, el resgo crédto ha sdo utlzado como herramenta al momento de evaluar préstamos o bonos para los cuales la exposcón, o valor económco, del actvo es cercano a su noconal o valor nomnal. Esta es una aproxmacón aceptable para bonos pero certamente no para dervados, los cuales pueden tener valores postvos como negatvos. La exposcón al crédto puede defnrse como el valor postvo de los actvos, esto es: t V t (,0) CredtExpo sure = Max () Esto es así debdo a que s la contraparte ncumple con dnero adeudado, la suma total debe ser pagada. En contraste, s la deuda es monetara, sólo una fraccón debe ser repuesta. Esto es, el resgo pre-settlement sólo se orgnará cuando la reposcón de los costos del contrato tenga un valor postvo para la nsttucón (.e. está n the money).. Medcón del resgo credtco La evolucón de las herramentas de admnstracón de resgo credtco nos lleva a través de los sguentes pasos: otonal amount Sumas ponderadas por resgo. Calfcacones credtcas nternas / externas. Internal portfolo credt models Incalmente, el resgo fue meddo por una suma teórca total. Un multplcador, dgamos 8%, era aplcado a esta suma para establecer la cantdad de captal a requerr para mantener una reserva contra el resgo credtco.

3 El problema con esta aproxmacón es que gnoraba las varacones en la probabldad de ocurrenca de un default. En 988, el Comté de Baslea nsttuye una muy dura categorzacón del resgo crédto medante clasfcacones de resgo (rsk class), proporconando ponderacones de resgo para medr cada suma teórca. Este fue el prmer ntento para forzar a los bancos a mantener el captal adecuado en relacón al resgo que estaban asumendo. Estas ponderacones de resgo demostraron ser tambén smplstas, sn embargo, crearon ncentvos para que los bancos alterasen sus portfolos con el objeto de maxmzar los retornos de sus acconstas sujetos a los requermentos de captal de Baslea. Estos tenen el efecto adverso de la creacón de más resgo dentro de los estados de cuenta de los bancos comercales, los cuales no fueron tendos en cuenta en las normas propuestas en 988. Como ejemplo, no había dferencacón entre crédtos corporatvos clase AAA y aquellos con calfcacón C. Por lo cual los crédtos C eran más redtuables que los AAA, determnados con la msma suma de captal regulatoro, el sector bancaro respondó alterando sus préstamos haca crédtos con menor calfcacón. Esto condujo a que las propuestas 00 del Comté de Baslea permtera a los bancos utlzar sus propas calfcacones nternas y externas de crédtos. Esta calfcacón provee una mejor representacón del verdadero resgo credtco..3 Resgo de crédto vs. Resgo de mercado Item Market rsk Credt rsk Fuente de resgo Sólo resgo de mercado Resgo de default, Resgo de reposcón Resgo de mercado Dstrbucones En la mayoría de los casos smétrca. Sesgadas a la zquerda Posblemente leptocúrtca Horzonte de tempo Corto plazo (días) Largo plazo (años) Acumulacón Busness/ tradng unt Whole frm vs. counterparty Cuestones legales o aplcables Muy mportantes. Mdendo el resgo crédto. Credt losses 3

4 Para smplfcar, consderemos sólo el resgo de crédto ocasonado por el ncumplmento o default. Esto es lo que se denomna default mode (método default). La dstrbucón de pérddas debdo al resgo crédto de un portfolo de nstrumentos puede ser descrpta como: CredtLoss = b CE = ( f ) () Donde: b es una varable aleatora (de Bernoull) que toma el valor cuando ocurre un default y 0 en los otros casos, con una probabldad p, de manera tal que E(b ) = p CE es la exposcón credtca al momento del default f es la tasa de repago o recovery rate. En teoría todas éstas podrían ser varables aleatoras. Para contnuar, asumremos que la únca varable aleatora es el evento de default b.. Eventos conjuntos Asumendo que la únca varable aleatora es el default, la ecuacón () nos muestra que las pérddas credtcas esperadas serán: E( CL) = E( b ) CE ( f) = p CE = = ( f ) (3) La dspersón en pérddas credtcas, sn embargo, depende fuertemente de la correlacón entre los sucesos de default. Es a menudo convenente asumr que los eventos son estadístcamente ndependentes. Esto smplfca consderablemente el análss, como ser la probabldad de cualquer evento compuesto es smplemente el producto de las probabldades ndvduales de los eventos. P(A B) = A) x B) (4) 4

5 En el otro extremo, s dos eventos están perfectamente correlaconados, esto es, s B sempre ncumple cuando ncumple A, tenemos que: P(A B) = B/A) x A) = x A) = A) (5) Cuando las probabldades margnales son guales, A) = B). Supongamos por un momento que las probabldades margnales son A) = B) = %. La probabldad de un evento conjunto es 0.0% en el caso de ndependenca y % en el caso de correlacón perfecta. Más generalmente, uno podría demostrar que la probabldad de un default conjunto depende de las probabldades margnales y las correlacones. Las expectatvas de ocurrenca pueden denotarse como: E( b b ) = C( b, b ) + E( b ) E( b ) = ρσ σ A) B) (6) + Determnando que b A es una varable Bernoull, su desvacón estándar es: [ )] σ = A) A, de gual manera puede determnarse b B. Tenemos entonces A que: [ A) ] B) [ B) ] A) ) p ( A I B) = Corr( A, B) A) + B (7) Por ejemplo, s la correlacón es untara y A) = B) = p, tenemos que [ p) ] [ p) ] + p = [ p) ] + p p p ( A I B) = =.3 Ejemplo Consderemos por un nstante un portfolo de $00 mllones compuesto por tres bonos A, B y C, con dstntas probabldades de default. Para smplfcar asumremos que: () las exposcones son constantes, () que la tasa de recupero en caso de default es cero y (3) los eventos de default son ndependentes cualquera sea el emsor. Ejemplo extraído de: Joron, Phlppe, Fnancal Rsk Handbook (Second Edton), John Wley & Sons. Inc

6 Tabla..- Exposcón de la cartera, resgo de ncumplmento y pérddas credtcas Emsor Exposcón Probabldad A $ B $ C $ Default Pérddas Probabldad Prob. Acumul. Esperado Varanca nnguno A B C AB AC BC ABC Sumatora El gráfco () nos muestra la dstrbucón de frecuenca de las pérddas. De la tabla precedente podemos calcular las pérddas esperadas como: E ( CL) = p CE = 3.5. La tabla tambén nos muestra la varanca la cual puede determnarse de la sguente manera: V ( CL) = ( L E( CL )) L ), de la cual = puede determnarse que el desvío estándar es: σ ( CL) = V ( CL) = = $0. 9 mllones. Gráfco ().- Dstrbucón de las pérddas credtcas Frecuenca Pérdd as nesperadas Pérddas esperadas Clase Op. Ct. Pág 6. 6

7 Alternatvamente, podemos expresar el rango de pérddas con un 95% quantle, el cual es el menor Cl posble, esto es: P(CL Cl) 95% (8). En nuestro ejemplo de la tabla, la cfra es 45 mllones. Otra manera de decrlo, las pérddas, al menos el 95% de las veces no superarán los 45 mllones. En térmnos de desvacones de la meda, esto nos da pérddas nesperadas por 3 mllones (45-3.0). Conclusones Este ejemplo tan smple de tres bonos nos provee de una clara medcón de la dstrbucón del resgo credtco. os muestra que la dstrbucón está sesgada a la zquerda. Además, la dstrbucón tene saltos rregulares que corresponden a los eventos de default. El resgo de default es el componente prmaro del resgo credtco. Está representado por la probabldad de default (PD) así como tambén por las pérddas determnadas por el default (LGD). Cuando ocurre un default, la pérdda actual es la combnacón de la exposcón al ncumplmento y las pérddas ocasonadas por el msmo. Para determnar la exposcón de un crédto o una decsón de nversón al resgo de ncumplmento, un nversor necesta medr la probabldad de que la contraparte ncumpla. Esta capacdad de medcón depende cas exclusvamente de la cantdad de nformacón que el nversor tenga sobre su contraparte, nformacón que, en la mayoría de los casos, deberá obtenerse de la relacón exstente entre las partes, de la nformacón dsponble públcamente o comprarse. Bblografía recomendada Fnancal Rsk Handbook (Second Edton), Phlpe Joron. John Wley & Sons. Inc

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013 Tema 6 El modelo IS-LM Prof. Antono Santllana del Barro y Anhoa Herrarte Sánchez Unversdad Autónoma de Madrd Curso 2012-2013 Bblografía oblgatora Capítulo 5, Macroeconomía, (Blanchard et al) Apuntes de

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming

TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming TEMA 6. La produccón, el tpo de nterés y el tpo de cambo: el modelo Mundell-Flemng Anhoa Herrarte Sánchez Dpto. de Análss Económco: Teoría Económca e Hstora Económca Curso 2010-2011 Bblografía 1. Blanchard,

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

EL IMPACTO DE BASILEA III EN EL NEGOCIO FINANCIERO

EL IMPACTO DE BASILEA III EN EL NEGOCIO FINANCIERO EL IMPACTO DE BASILEA III EN EL NEGOCIO FINANCIERO RDF RskDynamcs ntothefuture: Software para determnar el efecto que se produce sobre el balance en escenaros macroeconómcos Ramon Tras Fundador y Presdente

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

Lo que necesito saber de mi Tarjeta de Crédito

Lo que necesito saber de mi Tarjeta de Crédito Lo que necesto saber de m Tarjeta de Crédto Informatvo tarjetas de crédto bancaras Cómo obtener una 3 Qué es una La tarjeta de crédto es un medo de pago que permte a los clentes utlzar una línea de crédto

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Lo que necesito saber de mi tarjeta de crédito

Lo que necesito saber de mi tarjeta de crédito Lo que necesto saber de m tarjeta de crédto Informatvo tarjetas de crédto bancaras Cómo obtener una tarjeta de crédto 3 Qué es una tarjeta de crédto La tarjeta de crédto es un medo de pago que permte a

Más detalles

C I R C U L A R N 2.133

C I R C U L A R N 2.133 Montevdeo, 17 de Enero de 2013 C I R C U L A R N 2.133 Ref: Insttucones de Intermedacón Fnancera - Responsabldad patrmonal neta mínma - Susttucón de la Dsposcón Transtora del art. 154 y de los arts. 158,

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Premio Nacional BMV. Autor: Blackbird. Categoría: Investigación

Premio Nacional BMV. Autor: Blackbird. Categoría: Investigación Estmacón del resdual de un bono respaldado por hpotecas medante un modelo de resgo crédto: una comparacón de resultados de la teoría de cópulas y el modelo IRB de Baslea II en datos del mercado hpotecaro

Más detalles

1 Publicado en el Diario Oficial de la Federación el 27 de julio de 2011.

1 Publicado en el Diario Oficial de la Federación el 27 de julio de 2011. DISPOSICIONES de carácter general que establecen el régmen de nversón al que deberán suetarse las socedades de nversón especalzadas de fondos para el retro. 1 Al margen un sello con el Escudo Naconal,

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales

TEMA 3. La política económica en una economía abierta con movilidad perfecta de capitales TEMA 3. La polítca económca en una economía aberta con movldad perfecta de captales Asgnatura: Macroeconomía II Lcencatura en Admnstracón y Dreccón de Empresas Curso 2007-2008 Prof. Anhoa Herrarte Sánchez

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

UNIVERSIDAD POLITÉCNICA DE VALENCIA

UNIVERSIDAD POLITÉCNICA DE VALENCIA UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA POLITÉCNICA SUPERIOR DE ALCOY MODELOS MULTICRITERIO PARA LA SELECCIÓN DE PORTAFOLIOS EN LA BOLSA DE MADRID TESIS DOCTORAL Doctorando: D. Davd Plà Santamaría

Más detalles

MEDIDAS DE RENTABILIDAD AJUSTADAS AL RIESGO EN EL ÁMBITO DE LAS ENTIDADES BANCARIAS

MEDIDAS DE RENTABILIDAD AJUSTADAS AL RIESGO EN EL ÁMBITO DE LAS ENTIDADES BANCARIAS 118b MEDIDAS DE RENTABILIDAD AJUSTADAS AL RIESGO EN EL ÁMBITO DE LAS ENTIDADES BANCARIAS Eduardo Trgo Martínez. Profesor Colaborador. Departamento de Fnanzas y Contabldad. Unversdad de Málaga. Plaza de

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

INSYS Advanced Dashboard for Enterprise

INSYS Advanced Dashboard for Enterprise Enterprse Enterprse INSYS Advanced Dashboard for Enterprse Enterprse, es un tablero de control para llevar a cabo la Gestón de la Segurdad de la Informacón, Gestón de Gobernabldad, Resgo, Cumplmento (GRC)

Más detalles

Estimación de la Demanda de Crédito Agrícola para el Cantón La Maná, Provincia de Cotopaxi

Estimación de la Demanda de Crédito Agrícola para el Cantón La Maná, Provincia de Cotopaxi Revsta Tecnológca ESPOL, Vol. xx, pp-pp, (09, agosto, 007) Estmacón de la Demanda de Crédto Agrícola para el Cantón La Maná, Provnca de Cotopax Davd Robalno Chca Leonardo Sánchez Aragón Facultad de Cencas

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

Documento para Consulta Pública

Documento para Consulta Pública Documento para Consulta Públca Borrador de Metodología para la Determnacón del Captal Basado en Resgo (CBR) de las Compañías de Seguros (tercera versón) Ejercco N 3 de Aplcacón del CBR Superntendenca de

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

TEORÍA E INSTRUMENTOS DE CÁLCULO APLICADOS A LA FINANCIACIÓN CUANTITATIVA. APLICACIÓN DEL VaR

TEORÍA E INSTRUMENTOS DE CÁLCULO APLICADOS A LA FINANCIACIÓN CUANTITATIVA. APLICACIÓN DEL VaR TEORÍA E INSTRUMENTOS DE CÁLCULO APLICADOS A LA FINANCIACIÓN CUANTITATIVA. APLICACIÓN DEL VaR Josefna Martínez Barbeto Departamento de Economía Aplcada Unversdad de A Coruña barbeto@udc.es Carlos N. Bouza

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM Tema 4 Los mercados de benes y fnanceros: el modelo IS-LM Estructura del Tema 1. Introduccón 2. El mercado de benes y la relacón IS 3. Los mercados fnanceros y la relacón LM 4. El modelo IS-LM 4.1 La polítca

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

SERIE DOCUMENTOS BORRADORES

SERIE DOCUMENTOS BORRADORES ISSN 0124-4396 E C O N O M Í A SERIE DOCUMENTOS No. 56, dcembre de 2004 Aversón al resgo y efcenca de escala en los bancos: ncluyendo varables de resgo y regulacón Ana María Olaya Pardo Manuel Ramírez

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEARTAMENTO DE INGENIERÍA ELÉCTRICA DESACHO DE CARGA ORIENTADO A EVENTUAL SEARACIÓN EN ISLAS MEMORIA ARA OTAR AL TÍTULO DE INGENIERO CIVIL

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

El análisis de desviaciones sobre el resultado previsto

El análisis de desviaciones sobre el resultado previsto Tema 6 El análss de desvacones sobre el resultado prevsto Trabajar con presupuestos supone, como fase fnal lógca, el comparar las cfras prevstas con las reales, y proceder a un «análss de desvacones».

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

@wildfire @integra wildfire. Tecnología NeoLIDAR

@wildfire @integra wildfire. Tecnología NeoLIDAR Grupo ntegra wldfre ntegra wldfre Tecnología NeoLIDAR SISTEMA AUTOMÁTICO DE DETECCIÓN PRECOZ DE INCENDIOS FORESTALES Integracones Técncas de Segurdad, S.A. Integra Telecomuncacón, Segurdad y Control, S.A.

Más detalles

ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO

ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO OSCAR A. DIAZ QUEVEDO * * El análss y conclusones del presente trabajo son de exclusva responsabldad del autor y no reflejan necesaramente la opnón

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I*

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I* Ejerccos y Problemas Resueltos Paquete ddáctco para el curso de Macroeconomía I* AZCAPOTZALCO Departamento de Economía Ma. Beatrz García Castro** Mayo de 2003 *Agradezco a la ayudante de nvestgacón Paola

Más detalles

10 (Primera Sección) DIARIO OFICIAL Lunes 25 de octubre de 2010

10 (Primera Sección) DIARIO OFICIAL Lunes 25 de octubre de 2010 10 (Prmera Seccón) DIARIO OFICIAL Lunes 25 de octubre de 2010 RESOLUCION que modfca las dsposcones de carácter general aplcables a las nsttucones de crédto. Al margen un sello con el Escudo Naconal, que

Más detalles

Valoración de opciones financieras por diferencias finitas

Valoración de opciones financieras por diferencias finitas Valoracón de opcones fnanceras por dferencas fntas José Mª Pesquero Fernández Dpto. Nuevos Productos - Tesorería BBVA mpesquero@grupobbva.com Indce INDICE. Introduccón. La ecuacón dferencal 3. Dferencas

Más detalles

ESTABILIDAD FINANCIERA 05/2006 N.º 10

ESTABILIDAD FINANCIERA 05/2006 N.º 10 ESTABILIDAD FINANCIERA 05/2006 N.º 10 ESTABILIDAD FINANCIERA MAYO 2006 ESTABILIDAD FINANCIERA MAYO 2006 Número 10 ESTABILIDAD FINANCIERA es una revsta semestral que tene como objetvo servr de plataforma

Más detalles

1 Que a través de la Ley N 23.753 se regulan las medidas necesarias para la

1 Que a través de la Ley N 23.753 se regulan las medidas necesarias para la ./f;;;.roym/24 r O O f. V2-Tft},94/vr/0:7. J4v,dromzrx) BUENOS ARES, 2 6 FEB 9.06 VSTO la Ley N 23.753, el Decreto N 286/204, la Resolucón N 56/204 del Mnstero de Salud y la Dsposcón GPM N 2903/205, el

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

DESIGUALDAD, DIVERSIDAD Y CONVERGENCIA: (ALGUNOS) INSTRUMENTOS DE MEDIDA *

DESIGUALDAD, DIVERSIDAD Y CONVERGENCIA: (ALGUNOS) INSTRUMENTOS DE MEDIDA * DESIGUALDAD, DIVERSIDAD Y CONVERGENCIA: (ALGUNOS) INSTRUMENTOS DE MEDIDA * Francsco J. Goerlch Correspondenca: Unversdad de Valenca. Departamento de Análss Económco. Campus de los Naranjos. Av. de los

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles
Sitemap