Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos."

Transcripción

1 ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra: Es cualquer subconjunto de la poblacón. El número de elementos de la muestra se llama tamaño de la muestra. El carácter estadístco es una propedad que permte clasfcar a los ndvduos de una poblacón. Clasfcamos los caracteres estadístcos en Cualtatvos, los que no podemos medr, y en Cuanttatvos, los que podemos medr. Los valores que toman los caracteres estadístcos cuanttatvos los llamamos varables estadístcas. Las varables estadístcas pueden ser dscretas y contnuas. Una varable estadístca es dscreta cuando sólo puede tomar un número fnto de valores o nfnto numerable. Representamos sus valores medante: x,x,...,x. Una varable estadístca es contnua cuando puede tomar todos los valores posbles dentro de un ntervalo de la recta real. Las representamos medante el ntervalo o clase, y tomamos como representante del ntervalo la marca de clase del ntervalo (punto medo del ntervalo). Es necesaro que las clases tengan el msmo tamaño. Llamamos dstrbucón estadístca al conjunto de todos los datos estadístcos. Podemos presentar los datos estadístcos medante tablas con las varables estadístcas y las dferentes frecuencas de estas varables. Frecuenca absoluta de un valor representaremos por f Frecuenca absoluta acumulada de un valor n x es el número de veces que aparece este valor x. La x es la suma de las frecuencas absolutas de los F. Sabemos que: F = f + f f valores menores o guales que x. La representamos por Frecuenca relatva de un valor x es el cocente entre la frecuenca absoluta de ese valor y el f número total de datos que tenemos en la dstrbucón estadístca. La representaremos por h =. N Frecuenca relatva acumulada de un valor x es el cocente entre la frecuenca absoluta acumulada del valor x y el número total de datos de la dstrbucón estadístca. La representamos F f + f f f f f por H. Sabemos que: H = = = = h + h h N N N N N

2 Podemos agrupar los datos hacendo representacones gráfcas. De estas representacones las más mportantes son: Dagrama de barras: representamos los datos medante barras de altura proporconal a su magntud. En el dagrama de barras los datos pueden ser cualtatvos o cuanttatvos, pero sempre sn agrupar en clases. Hstogramas: Es un dagrama de barras pero los datos son sempre cuanttatvos agrupados en clases o ntervalos. El polígono de frecuencas es la línea rota que une los puntos medos de los lados superores de los rectángulos que forman las barras. Tanto el dagrama de barras como el hstograma tenen un polígono de frecuencas asocado. Dagrama de sectores: Dvdmos un círculo en sectores de tamaño proporconal a la magntud de los datos que representan. [0, 5) [5, 0) [0, 5) [5, 0) [0,5) [5, ) Este es un ejemplo de dagrama de sectores, que corresponde a los datos del segundo problema de autoaprendzaje, el del médco de cabecera. Qué hay que hacer para analzar una muestra? Recoger los datos Ordenar los datos (en orden crecente o decrecente) Recuento de frecuencas Agrupacón de los datos: según la varable aleatora sea dscreta o contnua. Construccón de la tabla estadístca. Los parámetros son unos números que nos proporconan una dea, lo más aproxmada posble, del comportamento de todos los elementos de una poblacón en relacón al carácter que estudamos. Los dvdmos en dos grupos: los parámetros de centralzacón y los parámetros de dspersón. Parámetros de centralzacón pretenden agrupar o centralzar los datos correspondentes a toda una poblacón en sólo un valor numérco, representando el conjunto total. Los más mportantes son: meda artmétca, moda y medana. N x + x xn La meda artmétca: x = = x, donde x es cada uno de los valores de la N N = varable estadístca y N es el número total de datos. El cálculo de la meda artmétca es muy sencllo e ntervenen todos los datos. Presenta un nconvenente, los efectos, que a veces son graves, que producen los valores extremos. Estos valores normalmente, no son sgnfcatvos.

3 La moda es el valor de la varable con mayor frecuenca. S los datos los tenemos agrupados en clases la llamamos clase modal. La medana es el valor de la varable que ocupa el lugar central s tenemos un número mpar de datos. En caso contraro la medana concde con la meda artmétca de los valores centrales. La medana tene la propedad de que el 50% de los datos son menores o guales que ella y el otro 50% son mayores o guales. Entonces la medana dvde el conjunto de datos en dos subconjuntos guales. Parámetros de dspersón tenen como objetvo presentarnos una dea de la proxmdad o lejanía de los datos de la poblacón respecto al valor que hemos tomado como valor central. Los más mportantes son: el rango, la varanza y la desvacón típca. Una desvacón típca muy grande ndca que hay mucha dspersón de los datos, y una desvacón típca muy pequeña ndca que los datos están todos alrededor del valor central. El rango es la dferenca entre el valor máxmo y el mínmo de una varable estadístca. S el rango es grande exste la posbldad de que los datos estén alejados unos de otros, y por tanto, que los valores centrales no sean muy representatvos. Por otro lado, s el rango es pequeño, los datos no pueden encontrarse muy dstancados y los valores centrales pueden ser representatvos del conjunto. La varanza es la meda artmétca de los cuadrados de las desvacones de los datos respecto a N ( x x) + ( x x) ( xn x) la meda: σ = = x x. N N La desvacón típca es la raíz cuadrada de la varanza: Cuando en los N datos sólo aparecen k valores dferentes (lógcamente k<n), x, x,..., xk, podemos utlzar la tabla de frecuencas para obtener la meda y la varanza: k k k k x = xf(x ) = x h( x ) σ = x f(x ) x = x h( x ) x N = = N = = (Recordemos que f es la frecuenca absoluta y h la frecuenca relatva) = σ = σ

4 Ejerccos de autoaprendzaje:. Un profesor de 3º ESO de nglés, de una clase de 5 alumnos, tene las notas sguentes en su cuaderno: 5, 3, 4,,, 8, 9, 7, 6, 8, 6, 7, 9, 8, 7, 7,, 0,, 5, 8, 0, 8, 8, 4 Se trata de una varable aleatora dscreta. Construmos la tabla estadístca: x f F h H = = = = = = = = = = 5 5 La suma de todas las frecuencas absolutas es el número total de datos, en este caso concreto esta suma se corresponde con el número de alumnos: 5. La suma de todas las frecuencas relatvas es sempre la undad. Hacemos el correspondente dagrama de barras: Qualfcacons d'anglés f x f

5 Hace falta hacer un estudo estadístco, calculando las meddas de centralzacón y las de dspersónn y sacar las conclusones de estos cálculos. x f x f x f x = = σ = = σ = =.938 Las meddas de centralzacón son: La meda artmétca es x = 5. 04, la moda es el 8 y la medana es 6 Las meddas de dspersón son: El recorrdo o rango es 9, la varanza es y la desvacón típca es σ = Nuestras conclusones son las sguentes: sabemos que la meda es de 5.04, pero hay una dspersón de 3. Podemos decr que las notas de nglés son o muy buenas o malas. Sobretodo podemos decr que, como la moda es 8 y la medana es 6, hay más gente con buenas notas, pero tambén hay gente suspendda.. Hemos recogdo el número de personas que han vstado el médco de cabecera a lo largo del mes de novembre: 3,, 3, 4,, 4, 5, 6, 7, 3, 4, 5, 3,, 5, 6, 5,, 4, 3, 6, 9, 3, 6, 7, 3, 6, 5,, 6. Se pde una tabla de frecuencas con su dagrama correspondente y tambén un estudo estadístco calculando las meddas de centralzacón y de dspersón. Se trata de una varable aleatora contnua. Agrupamos los datos en clases que son ntervalos de tamaño 5. La marca de clase es el punto medo de cada ntervalo. Construmos la tabla estadístca: Clases Marca de f F h H clase [0, 5) ˆ 0.3 6ˆ [5, 0) ˆ [0, 5) ˆ 0.8 3ˆ [5, 0) ˆ

6 [0,5).5 8 = 0.03ˆ 0.9 3ˆ [5, ) ˆ = Construmos el hstograma: Vstes al metge de capçalera [0, 5) [5, 0) [0, 5) [5, 0) [0,5) [5, ) f Calcula la meda artmétca, la varanza y la desvacón típca. Clases Marca de f x f x f clase:x [0, 5) [5, 0) [0, 5) [5, 0) [0,5) [5, ) x = = 3.73ˆ σ = σ = σ =.6006 =.56ˆ La meda es x = 3.73ˆ, la varanza es σ =.56ˆ y la desvacón típca es: σ = Podemos decr que, más o menos, el número de pacentes que ha recbdo el médco ha sdo, más o menos de CON LA CALCULADORA: ON/ STAT Necestamos poner la calculadora en modo STAT pulsando ndf F DATA DATA DATA DATA DATA Introducr los datos. Por ejemplo: 3, 4, 7, 9, 3 M + ; 4 M + ; 7 M + ; 9 M + ; M + Ahora podemos conocer las dferentes meddas:

7 Para saber: x necestamos pulsar x M en la pantalla aparece x = 7 σ necestamos pulsar ndf RM en la pantalla aparece σ = 3. 9 x necestamos pulsar ndf ) en la pantalla aparece x = 35 n n necestamos pulsar ) en la pantalla aparece n=5

8 Problemas:. Hemos hecho un estudo a 00 famlas para estudar el número de personas que forman la undad famlar y hemos obtendo la tabla sguente: Personas por famla Número de famlas Construr la tabla de frecuencas Hacer la representacón gráfca de la dstrbucón.. Los pesos, en kg, de los alumnos de un grupo de 4º ESO son: 54, 73, 5, 58, 66, 5, 53, 67, 53, 54 59, 6843, 60, 46, 56, 48, 6, 49, 6, 56, 50, 57, 64, 57, 5. Agrupar los datos en ntervalos de tamaño 5 kg, sendo el prmero [40, 45), y construr una tabla de frecuencas. Representar esta dstrbucón de pesos medante un hstograma. 3. Las alturas de todos los alumnos del nsttuto de 4º ESO están recogdas en la sguente tabla: Altura en cm Alumnos 55 a a a a a a a a 95 3 Construr la tabla de frecuencas, agrupando los datos en clases y elgendo la marca de clase adecuada. Hacer el correspondente hstograma. 4. Les calfcacones fnales de Matemátcas de los alumnos de 3º ESO venen dadas en la tabla sguente: Calfcacones EX NT B SF IN Nº Alumnos Construr una tabla de frecuencas. Calcular el tanto por cento de aprobados y el de suspensos. Representar gráfcamente esta dstrbucón medante un dagrama de barras y un dagrama de sectores.

9 5. En una prueba de Bología, de tpo test, de 60 cuestones, los alumnos han contestado correctamente: 3; 4; 9; 35; 5; 49; 55; 8; 38; 46; 59; 35; 5; 8; 3; 37; 45; 4; 5; 35; 4; 5; ; 9; 43; 39; 33; 47;. Construr una tabla de frecuencas agrupando los datos en 6 ntervalos. Representar gráfcamente esta dstrbucón. 6. Hemos hecho un test de 60 preguntas a 00 alumnos. En la sguente tabla recogemos el número de preguntas que han contestado correctamente: Número de preguntas Número de alumnos a) Represéntala gráfcamente medante un hstograma. Qué porcentaje de alumnos contestan ben a más de la mtad de las preguntas? b) Hacer un estudo estadístco, con las meddas de centralzacón y de dspersón, y sacar las conclusones oportunas. 7. Llenar la sguente tabla, con los pesos de todos los alumnos de vuestra clase cuando nacstes: Peso en Kg Nº de Nños/Nñas,5 a,9,9 a 3,3 3,3 a 3,7 3,7 a 4, 4, a 4,5 Construr la tabla de frecuencas. Representar gráfcamente esta dstrbucón. Calcular el recorrdo o rango. Calcular el peso medo. Calcular la desvacón típca. Sacar conclusones acerca de este estudo. 8. Comparar los resultados académcos de dos clases que han obtendo las sguentes calfcacones fnales: CLASE A CLASE B Insufcentes 7 Insufcentes 7 Sufcentes 0 Sufcentes 5 Notables 8 Notables 4 Sobresalentes Sobresalentes 4 a) Para hacer este estudo calcula el tanto por cento de los alumnos que han consegudo cada una de les calfcacones y represéntalo gráfcamente medante un dagrama de sectores. b) Ahora hacer el estudo con las meddas de centralzacón y de dspersón 9. La cantdad de dnero que llevan los 5 alumnos de una clase del nsttuto en un momento determnado es: Euros Nº alumnos

10 Calcula la meda y la desvacón típca del dnero que llevan en el bolsllo estos alumnos. Escrbr conclusones a propósto de este pequeño estudo. 0. El peso medo de los alumnos de una clase del nsttuto es de 65 Kg. Incorporamos una persona al grupo que pesa 65 Kg, cuál será ahora el nuevo peso medo? Cuál es el nuevo peso medo s la persona que se ncorpora pesa 70 kg? Conocemos que la persona que se ncorpora es un juez, y baja la meda a 64 kg. Puede ser verdad?. Y s a la persona que se ncorpora le gustan mucho las chucherías?. Una famla consta de un matrmono y cuatro hjos. Todos los membros de la famla son trabajadores a sueldo. Qué parámetro estadístco, de los ses sueldos, nforma mejor de la rqueza famlar: la moda, la meda o la varanza? Qué parámetro estadístco nforma mejor sobre la dversdad de sueldos: la medana, la meda o la desvacón típca?. Los aumentos de precos de cnco productos almentaros han sdo, respectvamente, del, 3, 34, 48, 3 por cento. Qué medda de centralzacón refleja mejor el térmno medo de los aumentos, la medana o la meda artmétca? Calcular ambos valores. 3. En una clase de 4t ESO de 5 alumnos, hay 0 alumnos de francés y 5 de nglés. La nota meda de los 5 alumnos en Lengua Extranjera es 6.5. Sabemos que la nota meda de los alumnos de francés es de 6. Qué meda tenen los alumnos de nglés? 4. Calcula todas les meddas de centralzacón y de dspersón de las calfcacones obtendas por los alumnos de la clase en Matemátcas: 3, 7, 8, 5, 4, 0, 6, 6, 7, 5,, 0, 9, 3, 4, 6, 6, 5, 4, 0,, 8, 7, 6, 3, 8, 6, 7, 5, 4.

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato

Matemáticas aplicadas a las ciencias sociales Estadística y Probabilidad 1º de bachillerato Departamento de Matemátcas Matemátcas aplcadas a las cencas socales Estadístca y Probabldad º de bachllerato Matemátcas aplcadas a las cencas socales I, pág. de 48 Departamento de Matemátcas TEMA : ESTADÍSTICA

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas Raúl González Medina

Estadística. Problemas de Estadística 1º Ciclo ESO Departamento de Matemáticas  Raúl González Medina 1 Estadístca 01.- Indca que varables son cualtatvas y cuales cuanttatvas: a) Comda Favorta. b) Profesón que te gusta. c) Número de goles marcados por tu equpo favorto en la últma temporada. d) Número de

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 8: Estadística en una variable (unidimensional)

Tema 8: Estadística en una variable (unidimensional) Matemátcas aplcadas a las Cencas Socales I lasmatematcas.eu Tema 8: Estadístca en una varable Tema 8: Estadístca en una varable (undmensonal) 1. Introduccón Se desconocen con exacttud los orígenes de la

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO 43 ANEXO 1: Tablas facltadas al alumnado Las sguentes tablas serán rellenadas por parte de los grupos de estudantes que se realzarán en el aula, tal y como se comenta en el presente trabajo. Tabla de

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA?

ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA? ESTADÍSTICA 4º ESO A) INICIACIÓN A LA ESTADÍSTICA 1.- QUÉ ES LA ESTADÍSTICA? La Estadístca es la rama de las Matemátcas que se ocupa del estudo de una determnada característca en una poblacón, recogendo

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÓN

ESTADISTICA APLICADA A LA EDUCACIÓN UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

1. ESTADÍSTICA DESCRIPTIVA.

1. ESTADÍSTICA DESCRIPTIVA. Departamento de Matemátcas http://www.colegovrgendegraca.org/eso/dmate.htm Estadístca descrptva 1. ESTADÍSTICA DESCRIPTIVA. 1.1. Introduccón. En general, cuando se va a estudar un determnado colectvo,

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

ESTADÍSTICA DESCRIPTIVA Y BIDIMENSIONAL

ESTADÍSTICA DESCRIPTIVA Y BIDIMENSIONAL ESTADÍSTICA DESCRIPTIVA Y BIDIMESIOAL ÍDICE. Defncón de Etadítca. Concepto generale 3. Tratamento de la nformacón 4. Repreentacón de lo dato. Medda de centralzacón 6. Medda de dperón 7. Etadítca bdmenonal

Más detalles

Tema 1. Conceptos generales

Tema 1. Conceptos generales Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información.

Elaboración de Tablas ó Cuadros. La elaboración de tablas o cuadros, facilita el análisis y la presentación de la información. Elaboracón de Tablas ó Cuadros La elaboracón de tablas o cuadros, faclta el análss la presentacón de la nformacón. Para elaborar los cuadros, se debe, antes que todo, dentfcar las varables, característcas

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

USO Y MANEJO DEL SOFTWARE STATGRAPHICS

USO Y MANEJO DEL SOFTWARE STATGRAPHICS USO Y MANEJO DEL SOFTWARE STATGRAPHICS I.- ESTADISTICA DESCRIPTIVA. 1.1.- Defncón de Estadístca. 1.2.- Estructura y Tpos de Datos Estadístcos. 1.3.- Construccón de la Matrz de Datos 1.4.- Recuperacón de

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Capítulo III Medidas de posición y de dispersión

Capítulo III Medidas de posición y de dispersión Capítulo III Meddas de poscón y de dspersón Introduccón Hasta ahora, para descrbr un conjunto de datos, se han empleado tablas y gráfcos. Estos son útles para dar rápdamente una vsón general del comportamento

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

TEMA. Contenidos UNIDAD I: ESTADÍSTICA DESCRIPTIVA

TEMA. Contenidos UNIDAD I: ESTADÍSTICA DESCRIPTIVA ANÁLISIS DESCRIPTIVO DE VARIABLES CUANTITATIVAS () Contendos TEMA 4.4. Introduccón 4.5. Dstrbucones de frecuencas de varables cuanttatvas (datos agrupados) 4.6. Propedades de las dstrbucones de varables

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

4 E.M. Curso: NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas

4 E.M. Curso: NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas Curso: Colego SSCC Concepcón - Depto. de Matemátcas Undad de Aprendzaje: Estadístcas Capacdades/Destreza/Habldad: Raconamento Matemátco/ Comprensón, Aplcacón/ Valores/ Acttudes: Respeto, Soldardad, Responsabldad

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca www.aulatecnologa.com 1 ETADÍTICA DECRIPTIVA Lo prmero que buscamos con la Estadístca es el tratamento matemátco a partr de una nformacón epermental. Cuando queremos observar la evolucón de

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

JUAN CARLOS VERGARA SCHMALBACH VÍCTOR MANUEL QUESADA IBARGUEN

JUAN CARLOS VERGARA SCHMALBACH VÍCTOR MANUEL QUESADA IBARGUEN Introduccón a la estadístca, dstrbucones de frecuencas, gráfcos estadístcos, meddas de tendenca central, dspersón, poscón y forma, con ejemplos resueltos en Mcrosoft Excel JUAN CARLOS VERGARA SCHMALBACH

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:

Más detalles

Capítulo 3. SISTEMAS DE PARTÍCULAS

Capítulo 3. SISTEMAS DE PARTÍCULAS Capítulo 3. SISTEMAS DE PARTÍCULAS 3.1. Introduccón En la mayoría de los sstemas partculados esten partículas de dstnto tamaño tal como se observa en la Fgura 3.1. Muchos de los métodos que mden tamaño

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS GUÍA PARA PREPARAR EL EXAMEN EXTRAORDINARIO DE ESTADISTICA Y PROBABILIDAD

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES *

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * Mª Consuelo Colom, Rosaro Martínez y Mª Cruz Molés WP-EC 2000-02 Correspondenca:

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles
Sitemap